(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0') → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0')) → 0'
p(0') → 0'
inc(s(x)) → s(inc(x))
inc(0') → s(0')
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0')
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0') → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0')) → 0'
p(0') → 0'
inc(s(x)) → s(inc(x))
inc(0') → s(0')
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
p,
inc,
sumListThey will be analysed ascendingly in the following order:
p < sumList
inc < sumList
(6) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
p, inc, sumList
They will be analysed ascendingly in the following order:
p < sumList
inc < sumList
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_0':s5_0(
+(
1,
n7_0))) →
gen_0':s5_0(
n7_0), rt ∈ Ω(1 + n7
0)
Induction Base:
p(gen_0':s5_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_0':s5_0(+(1, +(n7_0, 1)))) →RΩ(1)
s(p(s(gen_0':s5_0(n7_0)))) →IH
s(gen_0':s5_0(c8_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
inc, sumList
They will be analysed ascendingly in the following order:
inc < sumList
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s5_0(
n264_0)) →
gen_0':s5_0(
+(
1,
n264_0)), rt ∈ Ω(1 + n264
0)
Induction Base:
inc(gen_0':s5_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_0':s5_0(+(n264_0, 1))) →RΩ(1)
s(inc(gen_0':s5_0(n264_0))) →IH
s(gen_0':s5_0(+(1, c265_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
inc(gen_0':s5_0(n264_0)) → gen_0':s5_0(+(1, n264_0)), rt ∈ Ω(1 + n2640)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
sumList
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sumList(
gen_cons:nil4_0(
n531_0),
gen_0':s5_0(
b)) →
gen_0':s5_0(
b), rt ∈ Ω(1 + b + b·n531
0 + n531
0)
Induction Base:
sumList(gen_cons:nil4_0(0), gen_0':s5_0(b)) →RΩ(1)
if(isEmpty(gen_cons:nil4_0(0)), isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), tail(gen_cons:nil4_0(0)), cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) →RΩ(1)
if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), tail(gen_cons:nil4_0(0)), cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) →RΩ(1)
if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) →RΩ(1)
if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), nil), inc(gen_0':s5_0(b))) →LΩ(1 + b)
if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), nil), gen_0':s5_0(+(1, b))) →RΩ(1)
gen_0':s5_0(b)
Induction Step:
sumList(gen_cons:nil4_0(+(n531_0, 1)), gen_0':s5_0(b)) →RΩ(1)
if(isEmpty(gen_cons:nil4_0(+(n531_0, 1))), isZero(head(gen_cons:nil4_0(+(n531_0, 1)))), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(n531_0, 1))), cons(p(head(gen_cons:nil4_0(+(n531_0, 1)))), tail(gen_cons:nil4_0(+(n531_0, 1)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, isZero(head(gen_cons:nil4_0(+(1, n531_0)))), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, isZero(0'), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, true, gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(p(0'), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) →RΩ(1)
if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', gen_cons:nil4_0(n531_0)), inc(gen_0':s5_0(b))) →LΩ(1 + b)
if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', gen_cons:nil4_0(n531_0)), gen_0':s5_0(+(1, b))) →RΩ(1)
sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) →IH
gen_0':s5_0(b)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
inc(gen_0':s5_0(n264_0)) → gen_0':s5_0(+(1, n264_0)), rt ∈ Ω(1 + n2640)
sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) → gen_0':s5_0(b), rt ∈ Ω(1 + b + b·n5310 + n5310)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) → gen_0':s5_0(b), rt ∈ Ω(1 + b + b·n5310 + n5310)
(17) BOUNDS(n^2, INF)
(18) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
inc(gen_0':s5_0(n264_0)) → gen_0':s5_0(+(1, n264_0)), rt ∈ Ω(1 + n2640)
sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) → gen_0':s5_0(b), rt ∈ Ω(1 + b + b·n5310 + n5310)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) → gen_0':s5_0(b), rt ∈ Ω(1 + b + b·n5310 + n5310)
(20) BOUNDS(n^2, INF)
(21) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
inc(gen_0':s5_0(n264_0)) → gen_0':s5_0(+(1, n264_0)), rt ∈ Ω(1 + n2640)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
isEmpty(
cons(
x,
xs)) →
falseisEmpty(
nil) →
trueisZero(
0') →
trueisZero(
s(
x)) →
falsehead(
cons(
x,
xs)) →
xtail(
cons(
x,
xs)) →
xstail(
nil) →
nilp(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'p(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
sumList(
xs,
y) →
if(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y))
if(
true,
b,
y,
xs,
ys,
x) →
yif(
false,
true,
y,
xs,
ys,
x) →
sumList(
xs,
y)
if(
false,
false,
y,
xs,
ys,
x) →
sumList(
ys,
x)
sum(
xs) →
sumList(
xs,
0')
Types:
isEmpty :: cons:nil → false:true
cons :: 0':s → cons:nil → cons:nil
false :: false:true
nil :: cons:nil
true :: false:true
isZero :: 0':s → false:true
0' :: 0':s
s :: 0':s → 0':s
head :: cons:nil → 0':s
tail :: cons:nil → cons:nil
p :: 0':s → 0':s
inc :: 0':s → 0':s
sumList :: cons:nil → 0':s → 0':s
if :: false:true → false:true → 0':s → cons:nil → cons:nil → 0':s → 0':s
sum :: cons:nil → 0':s
hole_false:true1_0 :: false:true
hole_cons:nil2_0 :: cons:nil
hole_0':s3_0 :: 0':s
gen_cons:nil4_0 :: Nat → cons:nil
gen_0':s5_0 :: Nat → 0':s
Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(26) BOUNDS(n^1, INF)